Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photoinduced second harmonic generation in the In2O3 crystalline films doped by Al and Sn

Identifieur interne : 00AF37 ( Main/Repository ); précédent : 00AF36; suivant : 00AF38

Photoinduced second harmonic generation in the In2O3 crystalline films doped by Al and Sn

Auteurs : RBID : Pascal:04-0460739

Descripteurs français

English descriptors

Abstract

Photoinduced optical and second-order non-linear optical effects in nanolayers separating indium oxide (In2O3) crystalline films doped by Al, Sn, and glass substrates were found. Photoinduced optical second harmonic generation was applied as a particular non-linear optical method. The photoinduced second-order non-linear susceptibilities (at λ = 1.76 μm) show good correlation with the photoinduced linear optical susceptibilities, particularly with the optical absorption. The performed experimental measurements show that the observed effects are caused by two factors. The first one is related with the potential gradient on the glass-In2O3 film border. The second one is caused by additional polarization due to doping by the Al and Sn atoms. Such near-the-border nanolayers can be considered as new type of second-order optical materials.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0460739

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Photoinduced second harmonic generation in the In
<sub>2</sub>
O
<sub>3</sub>
crystalline films doped by Al and Sn</title>
<author>
<name sortKey="Herschel, H" uniqKey="Herschel H">H. Herschel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Theoretical Center, University of Koeln, Ludwigstr. 38</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>Ludwigstr. 38</wicri:noRegion>
<wicri:noRegion>Theoretical Center, University of Koeln, Ludwigstr. 38</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ebothe, J" uniqKey="Ebothe J">J. Ebothe</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>UFR Sciences, Université de Reims, UTAP-LMET, EA No. 2061, B.P 138, 21 rue Clement</s1>
<s2>Reims</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="région">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kitvk, I V" uniqKey="Kitvk I">I. V. Kitvk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Physics WSP, Al. Armii Krajowej 13/15</s1>
<s2>Czestochowa</s2>
<s3>POL</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>Czestochowa</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute of Computer Modelling, Technological University, ul. Warszawska 24</s1>
<s2>Krakow</s2>
<s3>POL</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>Krakow</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yamoda, U" uniqKey="Yamoda U">U. Yamoda</name>
<affiliation wicri:level="3">
<inist:fA14 i1="05">
<s1>Nanotechnology and Ceramics Center, Tokyo Technological University</s1>
<s2>Tokyo</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<placeName>
<settlement type="city">Tokyo</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">04-0460739</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0460739 INIST</idno>
<idno type="RBID">Pascal:04-0460739</idno>
<idno type="wicri:Area/Main/Corpus">00AF83</idno>
<idno type="wicri:Area/Main/Repository">00AF37</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0169-4332</idno>
<title level="j" type="abbreviated">Appl. surf. sci.</title>
<title level="j" type="main">Applied surface science</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium additions</term>
<term>Doped materials</term>
<term>Indium oxides</term>
<term>Non linear effect</term>
<term>Optical harmonic generation</term>
<term>Optical susceptibility</term>
<term>Physical radiation effects</term>
<term>Second harmonic generation</term>
<term>Thin films</term>
<term>Tin additions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet physique rayonnement</term>
<term>Génération harmonique 2</term>
<term>Matériau dopé</term>
<term>Effet non linéaire</term>
<term>Génération harmonique optique</term>
<term>Susceptibilité optique</term>
<term>Couche mince</term>
<term>Indium oxyde</term>
<term>Addition aluminium</term>
<term>Addition étain</term>
<term>In O</term>
<term>In2O3:Al Sn</term>
<term>7866J</term>
<term>4265K</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Photoinduced optical and second-order non-linear optical effects in nanolayers separating indium oxide (In
<sub>2</sub>
O
<sub>3</sub>
) crystalline films doped by Al, Sn, and glass substrates were found. Photoinduced optical second harmonic generation was applied as a particular non-linear optical method. The photoinduced second-order non-linear susceptibilities (at λ = 1.76 μm) show good correlation with the photoinduced linear optical susceptibilities, particularly with the optical absorption. The performed experimental measurements show that the observed effects are caused by two factors. The first one is related with the potential gradient on the glass-In
<sub>2</sub>
O
<sub>3</sub>
film border. The second one is caused by additional polarization due to doping by the Al and Sn atoms. Such near-the-border nanolayers can be considered as new type of second-order optical materials.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0169-4332</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. surf. sci.</s0>
</fA03>
<fA05>
<s2>222</s2>
</fA05>
<fA06>
<s2>1-4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Photoinduced second harmonic generation in the In
<sub>2</sub>
O
<sub>3</sub>
crystalline films doped by Al and Sn</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HERSCHEL (H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>EBOTHE (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KITVK (I. V.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YAMODA (U.)</s1>
</fA11>
<fA14 i1="01">
<s1>Theoretical Center, University of Koeln, Ludwigstr. 38</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>UFR Sciences, Université de Reims, UTAP-LMET, EA No. 2061, B.P 138, 21 rue Clement</s1>
<s2>Reims</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Physics WSP, Al. Armii Krajowej 13/15</s1>
<s2>Czestochowa</s2>
<s3>POL</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institute of Computer Modelling, Technological University, ul. Warszawska 24</s1>
<s2>Krakow</s2>
<s3>POL</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Nanotechnology and Ceramics Center, Tokyo Technological University</s1>
<s2>Tokyo</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>198-207</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16002</s2>
<s5>354000116162170230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>25 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0460739</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied surface science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Photoinduced optical and second-order non-linear optical effects in nanolayers separating indium oxide (In
<sub>2</sub>
O
<sub>3</sub>
) crystalline films doped by Al, Sn, and glass substrates were found. Photoinduced optical second harmonic generation was applied as a particular non-linear optical method. The photoinduced second-order non-linear susceptibilities (at λ = 1.76 μm) show good correlation with the photoinduced linear optical susceptibilities, particularly with the optical absorption. The performed experimental measurements show that the observed effects are caused by two factors. The first one is related with the potential gradient on the glass-In
<sub>2</sub>
O
<sub>3</sub>
film border. The second one is caused by additional polarization due to doping by the Al and Sn atoms. Such near-the-border nanolayers can be considered as new type of second-order optical materials.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66J</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B65K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Effet physique rayonnement</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Physical radiation effects</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Génération harmonique 2</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Second harmonic generation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Effet non linéaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Non linear effect</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Efecto no lineal</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Génération harmonique optique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Optical harmonic generation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Susceptibilité optique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Optical susceptibility</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indium oxyde</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium oxides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Addition aluminium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Aluminium additions</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Addition étain</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Tin additions</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>In O</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>In2O3:Al Sn</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>7866J</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>4265K</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s4>INC</s4>
<s5>62</s5>
</fC07>
<fN21>
<s1>257</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00AF37 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00AF37 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:04-0460739
   |texte=   Photoinduced second harmonic generation in the In2O3 crystalline films doped by Al and Sn
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024